Generation of explicit knowledge from empirical data through pruning of trainable neural networks
نویسندگان
چکیده
This paper presents a generalized technology of extraction of explicit knowledge from data. The main ideas are 1) maximal reduction of network complexity (not only removal of neurons or synapses, but removal all the unnecessary elements and signals and reduction of the complexity of elements), 2) using of adjustable and flexible pruning process (the pruning sequence shouldn't be predetermined the user should have a possibility to prune network on his own way in order to achieve a desired network structure for the purpose of extraction of rules of desired type and form), and 3) extraction of rules not in predetermined but any desired form. Some considerations and notes about network architecture and training process and applicability of currently developed pruning techniques and rule extraction algorithms are discussed. This technology, being developed by us for more than 10 years, allowed us to create dozens of knowledge-based expert systems.
منابع مشابه
Estimation of Monthly Mean Daily Global Solar Radiation in Tabriz Using Empirical Models and Artificial Neural Networks
Precise knowledge ofthe amount of global solar radiation plays an important role in designing solar energy systems. In this study, by using 22-year meteorologicaldata, 19 empirical models were tested for prediction of the monthly mean daily global solar radiation in Tabriz. In addition, various Artificial Neural Network (ANN) models were designed for comparison with empirical models. For this p...
متن کاملEfficiency of Neural Networks for Estimating the Patch Load Resistance of Plate Girders with a Focus on Uncertainties in Material and Geometrical Properties
In this paper, a sensitivity analysis of artificial neural networks (NNs) is presented and employed for estimating the patch load resistance of plate girders subjected to patch loading. To evaluate the accuracy of the proposed NN model, the results are compared with the previously proposed empirical models, so that we can estimate the resistance of plate girders subjected to patch loading. The ...
متن کاملGENERATION OF SYNTHETIC EARTHQUAKE RECORDS BY ARTIFICIAL INTELLIGENCE TECHNIQUES
For seismic resistant design of critical structures, a dynamic analysis, based on either response spectrum or time history is frequently required. Due to the lack of recorded data and randomness of earthquake ground motion that might be experienced by the structure under probable future earthquakes, it is usually difficult to obtain recorded data which fit the necessary parameters (e.g. soil ty...
متن کاملKnowledge Extraction from the Neural ‘Black Box’ in Ecological Monitoring
Phytoplankton biomass within the Saginaw Bay ecosystem (Lake Huron, Michigan, USA) was characterized as a function of select physical/chemical indicators. The complexity and variability of ecological systems typically make it difficult to model the influences of anthropogenic stressors and/or natural disturbances. Here, Artificial Neural Networks (ANNs) were developed to model chlorophyll a con...
متن کاملGENERATION OF MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE ACCELEGRAMS WITH HARTLEY TRANSFORM AND RBF NEURAL NETWORK
The Hartley transform, a real-valued alternative to the complex Fourier transform, is presented as an efficient tool for the analysis and simulation of earthquake accelerograms. This paper is introduced a novel method based on discrete Hartley transform (DHT) and radial basis function (RBF) neural network for generation of artificial earthquake accelerograms from specific target spectrums. Acce...
متن کامل